Correction to "Bifunctional Porphyrin Catalysts for the Synthesis of Cyclic Carbonates from Epoxides and CO_{2} : Structural Optimization and Mechanistic Study"

Tadashi Ema,* Yuki Miyazaki, Junta Shimonishi, Chihiro Maeda, and Jun-ya Hasegawa*

J. Am. Chem. Soc. 2014, 136, 15270-15279. DOI: 10.1021/ja507665a
(S) Supporting Information

Page 15273. In the final step of Scheme 2a, the ${ }^{18} \mathrm{O}$ atom of benzaldehyde can be washed out because the O atom of aldehyde can exchange with that of water under acidic conditions. ${ }^{1}$ Therefore, we have conducted additional experiments to determine the regioselectivity in the insertion of ${ }^{18} \mathrm{O}$ labeled CO_{2} into styrene oxide (2b) more reliably. The improved method is shown below (Scheme 2).

Scheme 2. Improved Method for the Analysis of ${ }^{18} \mathrm{O}$-Labeled Cyclic Carbonate 3b

Mass spectra indicated that path B and path A proceeded in a ratio of 52:48 (not 99:1). This improved method (Scheme 2) is recommended. The detailed procedure is added to the Supporting Information, where sections 3 and 14 have been revised accordingly.

We are grateful to Prof. Michael North (University of York, UK) for recommending that we employ the improved method.

ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b06328.

Synthesis of $\mathbf{1 h}-\mathbf{o},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, isotope experiments, determination of binding constants, computational details, and complete ref 28 (revised) (PDF)

REFERENCES

(1) Byrn, M.; Calvin, M. J. Am. Chem. Soc. 1966, 88, 1916-1922.

